The Soviet Union’s launch of Sputnik spurred the United States to create the Advanced Research Projects Agency (ARPA, later DARPA) in February 1958 to regain a technological lead. ARPA created the Information Processing Technology Office (IPTO) to further the research of the Semi Automatic Ground Environment (SAGE) program, which had networked country-wide radar systems together for the first time. The IPTO’s purpose was to find ways to address the US military’s concern about survivability of their communications networks, and as a first step interconnect their computers at the Pentagon, Cheyenne Mountain, and Strategic Air Command headquarters (SAC). J. C. R. Licklider, a promoter of universal networking, was selected to head the IPTO. Licklider moved from the Psycho-Acoustic Laboratory at Harvard University to MIT in 1950, after becoming interested in information technology. At MIT, he served on a committee that established Lincoln Laboratory and worked on the SAGE project. In 1957 he became a Vice President at BBN, where he bought the first production PDP-1 computer and conducted the first public demonstration of time-sharing.
At the IPTO, Licklider’s successor Ivan Sutherland in 1965 got Lawrence Roberts to start a project to make a network, and Roberts based the technology on the work of Paul Baran, who had written an exhaustive study for the United States Air Force that recommended packet switching (opposed to circuit switching) to achieve better network robustness and disaster survivability. Roberts had worked at the MIT Lincoln Laboratory originally established to work on the design of the SAGE system. UCLA professor Leonard Kleinrock had provided the theoretical foundations for packet networks in 1962, and later, in the 1970s, for hierarchical routing, concepts which have been the underpinning of the development towards today’s Internet.
Sutherland’s successor Robert Taylor convinced Roberts to build on his
early packet switching successes and come and be the IPTO Chief Scientist. Once there, Roberts prepared a report called Resource Sharing Computer Networks which was approved by Taylor in June 1968 and laid the foundation for the launch of the working ARPANET the following year.
After much work, the first two nodes of what would become the ARPANET were interconnected between Kleinrock’s Network Measurement Center at the UCLA’s School of Engineering and Applied Science and Douglas Engelbart’s NLS system at SRI International (SRI) in Menlo Park, California, on 29 October 1969. The third site on the ARPANET was the Culler-Fried Interactive Mathematics center at the University of California at Santa Barbara, and the fourth was the University of Utah Graphics Department. In an early sign of future growth, there were already fifteen sites connected to the young ARPANET by the end of 1971.
In an independent development, Donald Davies at the UK National Physical Laboratory developed the concept of packet switching in the early 1960s, first giving a talk on the subject in 1965, after which the teams in the new field from two sides of the Atlantic ocean first became acquainted. It was actually Davies’ coinage of the wording packet and packet switching that was adopted as the standard terminology. Davies also built a packet-switched network in the UK, called the Mark I in 1970. Bolt, Beranek & Newman (BBN), the private contractors for ARPANET, set out to create a separate commercial version after establishing “value added carriers” was legalized in the U. S.