PERPLEXUS project works to develop networks that self-organize and learn
Powerful computers made up of physically separate modules, self-organizing networks, and computing inspired by biological systems are three hot research topics coming together in one European project.
European researchers have developed an innovative computing platform. At the heart of the system are many small modules, each made from chips with an inbuilt ability to learn. A self-configuring’ wireless network ‘connects the modules, allowing them to operate as a coherent group.
Evolving to suit the task in hand and acting on information about their environment, such systems are described by their developers as “bio-inspired.” They are well suited to building mathematical models of scientific problems in which complexity arises from simple building blocks, such as in brains, stock markets, and the spread of new ideas.
Researchers already use programs that can learn – neural networks – to study problems like these. Their simulations would run faster if they could hardwire instructions into computer chips rather than load them as software, but normally this would stop the machines from learning. Chips that learn by physically reconfiguring themselves therefore offer the best of both worlds.
Large numbers of computers working in parallel to solve complex problems is not a new idea. But such networks are not very flexible, because the computers must be set up individually with software tailored to each task.
The European PERPLEXUS project draws on self-organizing wireless networks that can adapt to the job in hand to remedy the flexibility issue. The PERPLEXUS project aims to develop a scalable hardware platform made of custom reconfigurable devices endowed with bio-inspired capabilities that will enable the simulation of large-scale complex systems and to study of emergent complex behaviors in a virtually unbounded wireless
network of computing modules.
Ubidules and ubichips
In principle, such networks could provide “ubiquitous computing” by assembling themselves from any wireless-equipped devices within reach: computers, smart phones, robots, even electronic toys, explains Andres Perez-Uribe, spokesperson for the PERPLEXUS project.
PERPLEXUS researchers confined themselves to a model network built up from one basic building block: the ubidule, a purpose-designed module about the size of a personal digital assistant (PDA). Ubidules can take information from their environments, share data wirelessly, and adapt their behavior to the circumstances. In a large network, for instance, some ubidules may evolve to specialize in a particular task, which other ubidules then delegate to them.
Key to every ubidule is a processor chip, the ubichip, which can learn and evolve. This idea began with an earlier European project, POEtic, which developed a processor based on a large number of identical sub-units or cells. Depending on the current task, each cell can vary its function by changing its internal wiring – at a higher level, links between cells can also be made or broken. Until now, such flexibility has only been available from chips that are externally programmed. The ubichip, in contrast, works out the necessary wiring for itself.
Modelling brains and cultures
The researchers say ubidules can model both grid-based problems in the physical sciences, and the harder-to-formulate challenges of biological systems and social sciences.